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SUMMARY

The study of drop behaviour has attracted great interest in the last years due to its importance in different
industrial and biological systems. Most available works focus on Newtonian drops, excluding some very
important applications such as polymer mixing. Simulations of non-Newtonian drops have had only limited
study, mostly in time-dependent rheologies or simple flow cases. This work presents a boundary-only
formulation based on the dual reciprocity method to model the motion and deformation of non-Newtonian
shear thinning drops due to a shear Newtonian unbounded carrying flow. Pair-wise interactions at low
Reynolds number between two viscous shear thinning non-Newtonian drops are numerically simulated in
order to obtain mobility magnitudes under linear shear flow of different strengths. Separation of the drops
in the direction perpendicular to the imposed flow field at high capillary number (small surface tension)
and low viscosity ratio was favoured by shear thinning, increasing in magnitude as the capillary number
increases and the viscous ratio decreases. Higher values of this separation occur at higher values of the
viscosity ratio when compared with the case of Newtonian drops. In order to obtain a good physical
description of the non-Newtonian drop behaviour, while maintaining good computational performance,
the non-Newtonian viscosity is made to obey the truncated power law model. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Different authors have undertaken the task of studying flows involving the motion and deformation
of viscous drops. Some works analyse single drop under different flow conditions, such as [1–3],
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while others study more complex situations such as the interaction of two or more drops or
the deformation of drops inside closed domains, see [4–9]. From a modelling perspective, it is
important to consider that the flow fields outside and inside the drops behave differently but
depending on each other and the properties of the interface, see [8, 10].

The analytical solutions to this type of problems, drops motion and deformation, tend to be
complex and possess limited validity; therefore, numerical solutions are the most often chosen
form of solution. In this case, conventional numerical methods such as the finite element method
[11] or the finite difference method can often be computational costly in this case because
the drop surfaces are not fixed but changing in time [12], situation for which these methods
require remeshing at each time step or complex mesh adaptation algorithms [13, 14]. On the
other hand, the boundary elements method (BEM) deals only with integrals on the fluid bound-
aries [15–17] making remeshing, mesh refinement and interface position updating for drop
deformation simpler to handle [18]. However, it is important to note that the classical BEM
formulation in terms of only boundary integrals is valid only for Newtonian Stokes flows. The
implementation of this type of BEM formulations when dealing with non-Newtonian fluids,
i.e. variable viscosity, leads to boundary-domain integrals that require some particular schemes
to deal with the domain part of the formulation, losing the advantage of boundary integrals
alone.

In [1], the BEM is employed to model the deformation and motion of Newtonian drops suspended
in a different moving Newtonian fluid. In this pioneer work, special attention was given to the
evolution of the drops shape and possible break up conditions. More recently, several new BEM
formulations have been developed to study two-dimensional drops deformation and motion, where
the drops and/or the continuous phase are considered to be non-Newtonian fluids. However, these
works usually consider rheological models independent of the local strain rate such as the Maxwell
and Oldroyd-B models (for more details, see [9, 19]), which are insufficient for the analysis of
shear thinning fluids. In these BEM formulations, various alternatives have been used to deal with
the resulting domain integrals including transformations that eliminate the domain integrals [20],
cell integration [19] and some forms of analytical approaches [21].

The deformation of a single shear thinning drop obeying the Carreau–Yasuda model (for details
about this non-Newtonian model, see [22]) inside a convergent–divergent channel was evaluated by
Khayat [18]. Even though the proposed formulation is based on a non-Newtonian model, the local
effects are given in terms of an effective homogeneous viscosity inside the drop. The estimation
of the effective viscosity is based on the rate of strain averaged over the region occupied by
the drop at the prior time step. This characteristic of the solution scheme makes the formulation
inadequate for long simulation spans and large drop deformations where the value of the local
viscosity can greatly change from one point to another point inside the drop. It is important to
point out that although the Carreau–Yasuda rheological model predicts accurately the dynamics of
the flow motion of shear thinning fluids, it has the disadvantage of requiring the estimation of five
parameters, which are often difficult to obtain. Some of the most widely accepted alternatives are
the power and truncated power law models, see [12, 23]. The latter has the advantage of correctly
representing both the power law and Newtonian behaviours of the viscosity, whereas the power
law model shows shear thickening behaviour in shear thinning fluids in zones of low velocity
gradients, see [23].

This study presents a BEM formulation for the simulation of the motion and deformation of
non-Newtonian drops suspended in a Newtonian moving carrying fluid, where the fluid inside
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the drops behaves as a shear thinning fluid. An implicit velocity gradient calculation is used to
obtain the corresponding non-Newtonian shear stresses, avoiding the problems that arise from
space average schemes. In the integral representational formula for the interior flow, the dual
reciprocity method (DRM), see [24, 25], is used to convert the domain integral resulting from
the non-homogeneous (non-linear) term into equivalent boundary integrals, whereas the external
Newtonian flow is directly represented in terms of boundary integrals according to the corre-
sponding Green’s integral representational formula. In this manner, an efficient boundary-only
formulation of the problem is obtained. In order to represent adequately the actual physical
behaviour of the system of drops, the truncated power law model is used to calculate implicitly
the non-Newtonian viscosity at each collocation point. Various numerical schemes are employed
in order to solve the obtained system of only boundary integral equations. Quadratic elements
were used for the discretization of the surfaces and the approximation of the integral densities.
It has been previously shown [26] that the use of this type of elements increases the accuracy of
the approximation of the BEM–DRM formulation as well as being a mesh convergent discretiza-
tion. The local values of the normal vector and curvature were calculated using fourth-order
Lagrange polynomials, and a mass conservative surface smoothing algorithm was developed in
order to provide the values of the polynomial coefficients with an adequate node distribution on
the surface. Since during the simulation, the deformation of the drops can greatly increase their
perimeters the drop surfaces are remeshed, if it is required, according to the magnitude of their
deformation using the Bezier curves. Finally, the resulting non-linear system of algebraic equations
obtained from the collocation on the surface and internal nodes was solved via a modified Newton–
Raphson method, which showed good performance even on drops with strong non-Newtonian
behaviour.

To test the performance of the developed formulation in a situation of physical significance
without increasing the complexity of the analysis, a simple case of two initially circular shear
thinning drops suspended in a Newtonian linear shear flow is considered. At the initiation of the
numerical simulation, the two drops are located perpendicular to the streamlines of the imposed
linear shear flow and the trajectories of their mass centres are followed during the simulations for
a wide range of the physical and rheological parameters that describe the phenomena, namely the
capillary number (Ca), viscosity ratio (�) and power law index (n).

This paper is organized as follows. Governing equations for multiple non-Newtonian drops in an
unbounded domain under Newtonian linear shear flow are presented in Section 2. In the same
section, the selected rheological model is presented and its characteristics are briefly discussed.
Table I gives a summary of the variables and parameters used in the mathematical formulation of
the problem. Section 3 shows the integral representation of the problem as well as the DRM
approximation used to convert the domain integral in the integral representational formula for the
interior flow into equivalent boundary integrals. Section 3 also shows the calculation of the non-
homogeneous (non-linear) term on the collocation points, as well as the function used to interpolate
the different terms and to obtain the required particular solution of the auxiliary flow field. Section 4
presents the iterative scheme selected to solve the non-linear system of equations. Section 5
shows the different numerical algorithms that are used in conjunction with the boundary integral
formulations to simulate the development of the drops as time progresses. In Section 6, results
for drop interaction under different flow parameters are analysed and compared with those of
Newtonian drops. Finally, conclusions regarding physical and numerical issues relating to the
problem are given.
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Table I. Variables and parameters used.

Sp surface of drop p
�e domain external to the drops
�p domain internal to drop p
u j fluid velocity, m/s
xi vector location of a given point, m

�i j stress tensor, N/m2

p pressure, Pa
�i j Kronecker delta
�e external fluid viscosity, Pas

�NNi j non-Newtonian viscous stress, N/m2

�(�̇) non-Newtonian viscosity, Pas
ni normal vector

�̇ second invariant of the deformation tensor, s−1

	i j deformation tensor, s−1

G shear rate of the base flow, s−1

� surface tension, J/m2

�nk/�xk surface curvature, m−1

k power law consistency, Pas
n power law index

�NN non-Newtonian viscosity ratio
Ca capillary number

u j
i (x, y) single-layer kernel or Stokeslet

Ki j (x, y) double-layer kernel or Stresslet
r Euclidean distance between two points

�ei j extra stress tensor, N/m2

2. GOVERNING EQUATIONS

The flow configuration under study is composed of m drops of a given non-Newtonian fluid,
surrounded by a Newtonian fluid in an unbounded domain. A graphical representation of this
set-up is shown in Figure 1 where Sp, p=1,2, . . . ,m, represents the boundary of each drop, �e is
the exterior flow domain and �p, p=1,2, . . . ,m, the domain interior to each drop. Therefore, at
each domain the flow field must satisfy the continuity and the momentum conservation equations
that in the case of low Reynolds number reduces to the Stokes system of equations

�ui
�xi

=0 (1a)

��i j
�x j

=0 (1b)
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where

�i j =

⎧⎪⎨⎪⎩
−p�i j +�e

(
�ui
�x j

+ �u j

�xi

)
, x ∈�e

−p�i j +�NNi j , x ∈�p, p=1,2, . . . ,m

(2)

In Equations (1)–(2), u is the velocity, p the pressure, �i j the Kronecker delta, �e the viscosity
of the external flow and �NNi j is the non-Newtonian stress tensor given by

�NNi j =�(�̇)

(
�ui
�x j

+ �u j

�xi

)
(3)

where �(�̇) is the non-Newtonian viscosity and

�̇=
√√√√2

2∑
i=1

2∑
j=1

	i j 	i j (4)

with

	i j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(5)

The external flow field must also satisfy the following asymptotic conditions:

u→u∞, p→ p∞ as |x |→∞ (6)

where u∞ and p∞ are, respectively, the velocity and pressure far away from the drops. In this
study, the asymptotic condition is a simple shear flow given by

u∞(x)=(Gx2,0) (7)

Figure 1. Typical schematic representation of particles in Stokes shears flow.
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with a corresponding constant pressure, where G is the shear rate of the flow. Velocity and surface
traction matching conditions on the drops surface are

[u]Sp =0 and [�i j n j ]Sp =�ni
�nk
�xk

, p=1,2, . . . ,m (8)

where [ ]Sp denotes the jump across the drop surface Sp from �e to �p. In (8), � is the surface
tension, n is the outward unit normal vector and �nk/�xk is the surface curvature.

Besides, at the drop surface the following kinematic condition needs to be satisfied:

dx(
)
dt

=u(
) (9)

with u(
) is the drop surface velocity.
As the imposed external flow field is a regular Stokes flow, it follows from the domain integration

of the momentum (1b) over the unbounded external domain that the net force exerted over all the
particles needs to be equal to zero, i.e.∫

S
�i j n j dS=0 (10)

where S is the union of all of the drop surfaces considered, i.e. S=⋃m
p=1 Sp.

2.1. Non-Newtonian stress tensor

An adequate rheological model must be selected in order to accurately simulate a given physical
system. In the case of shear thinning drops, the power law model has been shown to be a powerful
tool bringing together accuracy and simplicity. Unfortunately, this model predicts shear thickening
in shear thinning drops in zones where velocity gradients are low, see [22, 23]. The truncated power
law model corrects the standard power law deficiencies for low deformation tensor by including
an additional parameter �̇0 that defines a transition from a Newtonian to a power law behaviour in
the viscosity

�(�̇)=

⎧⎪⎨⎪⎩k

(
�̇

�̇0

)n−1

, �̇��̇0

k, �̇<�̇0

(11)

where k is the power law consistency and n the power law index, which determines the strength
of the non-Newtonian effect. For shear thinning fluids values of the power law index vary in the
range [0.2,0.8] (see [22]). Using this model, shear thinning fluids will behave as a Newtonian
fluid up to �̇= �̇0, in accordance with the experimentally observed behaviour of this type of fluids,
see [11].

Equations (2) and (3) can be expressed in the non-dimensional form as

�i j = −p�i j +
(

�ui
�x j

+ �u j

�xi

)
(12)
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for x ∈�e and

�i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−p�i j +�NN

(
�̇

�̇0

)n−1( �ui
�x j

+ �u j

�xi

)
, �̇��̇0

−p�i j +�NN
(

�ui
�x j

+ �u j

�xi

)
, �̇<�̇0

(13)

for x ∈�p, p=1,2, . . . ,m, where the reference length is set as the radius of the non-deformed
drop a, reference velocity �/�e, reference pressure �/a, reference time �ea/� and the non-
Newtonian viscosity ratio as �NN=k/�e.

In order to represent the interior flow field, in the case when �̇>�̇0 as a non-homogeneous Stokes
flow field, the internal traction (13) is rewritten as

�i j =�Ni j +�NN
(

�̇

�̇0

)n−1( �ui
�x j

+ �u j

�xi

)
−�N

(
�ui
�x j

+ �u j

�xi

)
=�Ni j +�ei j (14)

where

�Ni j =−p�i j +�N
(

�ui
�x j

+ �u j

�xi

)
(15)

and �N is an artificial fluid viscosity chosen in this study to be equal to �NN, such that a power
index n=1 corresponds to a Newtonian fluid.

The term �ei j is the extra stress tensor, and it accounts for the non-Newtonian effects in the
viscosity, i.e.

�ei j =
(

�NN
(

�̇

�̇0

)n−1

−�N
)(

�ui
�x j

+ �u j

�xi

)
(16)

With the new definition of traction (14), the momentum equation (1b) for any point x ∈�p is
given by

��i j
�x j

= ��Ni j
�x j

+ ��ei j
�x j

=0 (17)

In terms of the dimensional variables, the matching, asymptotic and kinematic conditions become

[u]S p =0 (18a)

[�i j n j ]S p =ni
�nk
�xk

(18b)

u∞(x)=(Cax2,0), p∞(x)=const (19)

dx(
)

dt
=u(
) (20)

where Ca is the capillary number given by Ca=Ga�e/�. In this manner, the three dimensionless
parameters defining the behaviour of the drops motion and deformation are Ca, �NN and n.
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3. INTEGRAL REPRESENTATION

Using the Green’s formulae for a homogeneous Stokes system of equations, as is the case of
Equations (1a) and (1b) for the exterior Newtonian flow, the following integral representation for
the velocity field outside the drops can be obtained:

Ci ju j (x)+
∫
S
Ki j (x, y)(u j (y))e dSy =u∞

i (x)+
∫
S
ui j (x, y)(� jk(u(y)))enk(y)dSy (21)

where (u j (y))e and (� jk(u(y)))e are the values of the surface velocity and stress, respectively,

at a point y∈ S coming from �e. In the above integral representational formula, u j
i (x, y) is the

single-layer kernel or Stokeslet, located at point y and oriented in the j th direction, K ji (y,
) is
the double-layer kernel or Stresslet and Ci j is a constant coefficient equal to Ci j =�i j when x ∈�e,
Ci j =1/2�i j when x→
∈ S and Ci j =0 when x /∈�e.

The expressions for ui j (x, y) and K ji (y,
) in a two-dimensional field are given by

ui j (x, y)=− 1

4�

[
ln

(
1

r

)
�i j + (xi − yi )(x j − y j )

r2

]
(22)

Ki j (x, y)=�i j (u
j
i )nk(y)=−1

�

(xi − yi )(x j − y j )(xk− yk)nk(y)

r4
(23)

where r =|x− y| is the Euclidean distance between points x and y.
As the net force exerted by the exterior flow over all the drops is zero (see Equation (10)),

which implies zero average density of the single-layer potential in Equation (21), it follows that
such a single-layer integral tends to zero at infinity as O(1/r). This behaviour of the single layer
guarantees that the velocity field defined by Equation (21) satisfies the asymptotic condition (6).

On the other hand, the velocity field inside a drop p, with surface boundary Sp and internal
domain �p, can be expressed by the Green’s integral representational formula for the non-
homogeneous Stokes flow field (17) as

Ci ju j (x)−
∫
Sp

Ki j (x, y)(u j (y))p dSy = 1

�N

∫
�p

ui j (x, y)

(
−��ejk

�xk

)
d�y

− 1

�N

∫
Sp
ui j (x, y)(�

N
jk(u(y)))pnk(y)dSy (24)

As before, the constant Ci j is equal to Ci j =�i j when x ∈�p, Ci j =1/2�i j when x→
∈ Sp and
Ci j =0 when x /∈�p. In this case, (u j (y))p and (� jk(u(y)))p are the values of the surface velocity
and stress at a point y∈ Sp coming from �p. Using a similar approach, it is possible to show that
the following integral relation holds for any other drop r �= p, at a collocation point x ∈�p.

−
∫
Sr
Ki j (x, y)(u j (y))r dSy = 1

�N

∫
�r

ui j (x, y)

(
−��ejk

�xk

)
d�y

− 1

�N

∫
Sr
ui j (x, y)(�

N
jk(u(y)))r nk(y)dSy (25)
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By adding to Equation (24) the sum of the integral relation (25) corresponding to all the other
drops, i.e.

∑m
r=1(r �=p), we obtain the following representational formula for the velocity field at a

point x ∈�p, i.e. at a drop p, in terms of surface and domain integrals over all the drops:

Ci ju j (x)−
∫
S
Ki j (x, y)(u j (y))i dSy = 1

�N

∫
�i

ui j (x, y)

(
−��ejk

�xk

)
d�y

− 1

�N

∫
S
ui j (x, y)(�

N
jk(u(y)))i nk(y)dSy (26)

where �i =⋃m
j=1� j is the domain interior to all the particles, and (u j (y))i and (� jk(u(y)))i are

the values of the surface velocity and stress at a point y∈ S coming from �i .
By evaluating Equations (21) and (26) at a point x→
∈ Sp, i.e. at the surface of a drop p,

and using the velocity matching condition across the drop surface, Equation (18a), the following
system of integral equation is obtained:

(1+�N)

2
ui (
)+(1−�N)

∫
S
Ki j (
, y)u j (y)dSy

=u∞
i (
)+

∫
�i

ui j (
, y)

(
−��ejk

�xk

)
d�y

+
∫
S
ui j (
, y)[(� jk(u(y))nk(y))e−(�Njk(u(y))nk(y))i ]dSy (27)

where according to (18a) (u j (y))e=(u j (y))i =u j (y).
Since the internal traction in (27) is the Newtonian traction �Ni j , the boundary conditions for the

traction jump (18b) cannot be directly applied. Using Equation (14), the boundary condition for
the traction jump becomes

(� jk(u(y))nk(y))e−(�Njk(u(y))nk(y))i =(�eiknk)i +ni
�nk
�xk

(28)

Substituting (28) into (27) the following non-linear system of integral equations for the surface
velocity, at a point x→
∈ Sp, is obtained:

ui (
)+ 2(1−�N)

(1+�N)

∫
S
Ki j (
, y)u j (y)dSy =FNN

i (
) (29)

with

FNN
i (
) = 2

(1+�N)

[
u∞
i (
)+

∫
�i

ui j (
, y)

(
−��ejk

�xk

)
d�y

+
∫
S
ui j (
, y)(�ejknk(y))i dSy+

∫
S
ui j (
, y)ni

�nk
�xk

dSy

]
(30)
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In [2] it is proven that the homogeneous form of Equation (29) does not have any poles in the
range 0<�N<∞ and consequently (29) has a unique solution for any continuous datum Fi (
) in
this range of �N. Therefore, at each step of an iterative solution of (29), it is guaranteed that the
integral equation has a unique solution, where at each iteration the value of �ejk is considered to
be known.

3.1. Treatment of domain integrals

To transform the domain integral in (30) into an equivalent series of surface integrals, the DRM
is employed. The basis of this method is the expansion of the non-homogeneous term in the
governing equations using the interpolation approximation

−��ejk
�xk

≈
n∑

k=1
f (x, zk)�kl � jl (31)

where f (x, zk) is a known set of interpolating functions (usually radial basis functions) and �kl is an
unknown vector of coefficients to be determined by collocation at the points zk (k=1,2,3, . . . ,n)

in the domain of interest where the non-homogeneous term is to be approximated. Using this
approximation, we found the following expression for the volume integral over the bounded domain
�p at a drop p (for more details, see [24]):∫

�p

ui j (x, y)

(
−��ejk

�xk

)
d�y =

n(p)∑
k=1

�p,k
l

∫
�p

ui j (x, y) f (y, z
p,k)� jl d�y (32)

for every x ∈ R2 and n(p) interpolation points z p,k ∈�p, with k=1,2,3, . . . ,n(p), usually
distributed on the surface and at the interior of the interpolating domain.

Applying the Green’s second identity to the flow field (ui j (x, y)ei , p j (x, y)) and the auxiliary
field (ûil(y, z p,k)ei , p̂l(y, z p,k)) in the bounded domain �p, where

�2ûil(y, z p,k)
�y j�y j

− � p̂l(y, z p,k)
�yi

= f (y, z p,k)�il (33)

�ûil(y, z p,k)
�yi

=0 (34)

the following expression for the domain integrals at the right-hand side of (32) in terms of surface
integrals only is obtained:∫

�p

ui j (x, y) f (y, z
p,k)� jl d�y =Ci j û jl(x, z

p,k)−
∫
Sp

Ki j (x, y)û jl(y, z
p,k)dSy

+
∫
Sp
ui j (x, y)t̂ j l(y, z

p,k)dSy (35)

where

t̂i l(y, z
p,k)=�i j (ûil(y, z

p,k)ei , p̂l(y, z
p,k))n j (y) (36)
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In this manner, the volume integral in (24), for a point x ∈ �p, can be approximated by∫
�p

ui j (x, y)

(
−��ejk

�xk

)
d�y =

n(p)∑
k=1

�p,k
l

[
Ci j û jl(x, z

p,k)−
∫
Sp

Ki j (x, y)û jl(y, z
p,k)dSy

+
∫
Sp
ui j (x, y)t̂ j l(y, z

p,k)dSy

]
(37)

with Ci j equal to Ci j =�i j when x ∈�p and Ci j =1/2�i j when x→
∈ Sp.
In the same manner, it is possible to show that the volume integral over the bounded domain

�r in (25), for a point x ∈�p, can be given in terms of its DRM approximation as∫
�r

ui j (x, y)

(
−��ejk

�xk

)
d�y =

n(r)∑
k=1

�r,kl

[
−
∫
Sr
Ki j (x, y)û jl(y, z

r,k)dSy

+
∫
Sr
ui j (x, y)t̂ j l(y, z

r,k)dSy

]
(38)

with n(r) interpolation points zr,k ∈�r , k=1,2,3, . . . ,n(r).
Substituting the above volume integrals in Equations (24) and (30), we obtain the following

system of boundary-only integral equations:

Ci ju j (x)−
∫
Sp

Ki j (x, y)(u j (y))i dSy

=− 1

�N

∫
Sp
ui j (x, y)(�

N
jk(u(y)))i nk(y)dSy+ 1

�N

n(p)∑
k=1

�p,k
l

[
Ci j û jl(x, z

p,k)

−
∫
Sp

Ki j (x, y)û jl(y, z
p,k)dSy+

∫
Sp
ui j (x, y)t̂ j l(y, z

p,k)dSy

]
(39)

for a point x ∈�p, with Ci j equal to Ci j =�i j when x ∈�p and Ci j =1/2�i j when x→
∈ Sp, and

ui (
)+ 2(1−�N)

(1+�N)

∫
S
Ki j (
, y)u j (y)dSy

= 2

(1+�N)

{
u∞
i (
)+

∫
S
u j
i (
, y)ni

�nk
�xk

dSy+
∫
S
u j
i (
, y)(�ejknk(y))i dSy

+
n(p)∑
k=1

�p,k
l

[
1

2
ûi (
, z p,k)−

∫
Sp

Ki j (
, y)û jl(y, z
p,k)dSy+

∫
Sp
ui j (
, y)t̂ j l(y, z

p,k)dSy

]

+
m∑

r=1(r �=p)

n(r)∑
k=1

�r,kl

[
−
∫
Sr
Ki j (x, y)û jl(y, z

r,k)dSy+
∫
Sr
ui j (x, y)t̂ j l(y, z

r,k)dSy

]}
(40)
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for a point 
∈ Sp. In the above expressions the subscripts refer to vectors and tensor indexes and
the superscripts refer to summation indexes.

The values of the coefficients �r,kl ,r =1,2, . . . ,m, in the above system of integral equations,
corresponding to the interpolation at the domains interior to each drop, can be calculated from
(31) in the following manner, using matrix notation:

{�rl }=[F]−1

{
−��ejk(x)

�xk
� jl

}
r

(41)

At this point of the formulation, a numerical procedure must be established in order to relate
the nodal values of the velocity field to the divergence of the non-Newtonian stress tensor at the
collocation points. A common procedure to obtain such an expression when using the DRM is to
express the velocity field at an interpolation point in terms of the function f (x, yk) as

u(t)
i ≈

n∑
k=1

f (x, yk)(ki )
(t) (42)

which can be expressed in matrix notation as

{u(t)
i }=[F]{(t)

i } with {(t)
i }=[F]−1{u(t)

i } (43)

where the superscript (t) is representative of the iteration step in the approximation of the non-
linear term (see Section 4). Using (43), the gradient of the velocity field at the interpolation points
can be given in terms of the values of the velocity field at those points by{

�u(t)
i

�x j

}
=
[

�F
�x j

]
{(t)

i }=
[

�F
�x j

]
[F]−1{u(t)

i } (44)

This approximation is used at each drop to express the extra stress tensor �ei j in terms of the
drop surface and internal velocities. A similar approach was used to obtain an expression of the
divergence of �ei j in terms of its nodal values. In this manner, the coefficients ar ,r =1,2, . . . ,m,

in the integral equation (40) are defined in terms of the corresponding drops surface and internal
velocities. Therefore, integral equation (40) defines a relation between the surface velocity at a
drop p in terms of the surface and interior velocities of all the drops. By evaluating Equation (39) at
the surface and internal points of each drop, two additional sets of integral equations for each drop
is obtained, which are used to complete the system of equations, together with (40). In Equation
(39), the coefficients ap are given in terms of the surface and internal drop velocities using relation
(44). From the solution of (40) at the surface of each drop and (39) at the surface and interior
points of each drop the values of the drops surface and internal velocities as well as the surface
Newtonian traction �Njk(u)nk are obtained.

In this study, we use the augmented thin plate spline f (x, yk)=r2(x, yk) log(r(x, yk))+P1(x)
as the interpolating function, where P1(x) is a polynomial of order 1. This function has shown to be
an accurate and simple alternative for use within the DRM approach (see [27–29]). For the above
interpolation function the analytical expression of the auxiliar field (ûil(y, z p,k)ei , p̂l(y, z p,k)) is
known and available in the open literature (see [27, 30]).
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4. ITERATIVE SOLUTION OF THE NON-LINEAR SYSTEM OF EQUATIONS
FOR EACH TIME STEP

After discretization of the system of integral equations, a non-linear system of algebraic equations
arises for the variables ui at points 
∈ S and x ∈�p, and �Ni j at 
∈ S. Given the non-linear character
of this system caused by the dependence of �ei j on the nodal velocities, an iterative procedure must
be set in place to determine the actual solution. For simplicity, the system of algebraic equations
obtained after the discretization and interpolation can be expressed in matrix form as

[A][X]=[C]+[B(X)] (45)

where the matrix A contains the coefficients of the variables X to be found (velocities at the drops
surface and interior domains as well as the Newtonian surface tractions), the vector C contains the
non-homogeneous terms and B the results of using the previous iteration to calculate the terms
related to the DRM approximation.

The solution of this complete system of equations can be sought in different ways, the most
common of which is the Picard iteration because it reduces the solution of the non-linear system
of equations to the successive solution of a similar non-homogeneous linear system. Even though
this is by far the simplest and computational less expensive method, it was found to diverge when
the power law index was smaller than ≈0.8, and therefore not used here. A good alternative is to
use the Newton–Raphson method. The method starts by defining the residual function W (X),

W (X)= AX−B(X)−C (46)

The objective is then to find a vector X that minimizes W (X). In order to do so, a Taylor series
expansion of W (X) around an N -dimensional point X(t) truncated on the linear term is used, i.e.

W (X)≈W (X(t))+ 1

�(t)
JX (X(t)) ·�X(t) =0 (47)

where JX is the Jacobian matrix and

�X(t) =(X(t+1)−X(t)) (48)

Equation (47) constitutes a linear system of equations. Once the values of �X(t) are known, the
value of X(t+1) is calculated and the process is repeated until convergence is achieved.

The standard Newton–Raphson method uses the value of �(t) =1 in (47), but in most cases this
approach will overshot the right answer and even diverge. In order to avoid such situations, the
value of �(t) can be calculated as, see [31]

�(t)
optimal≈

(
‖W (X(t+1))‖2
‖W (X(t))‖2 +1

)−1

(49)

It has been shown that close to the solution of a non-linear system the use of �(t)
optimal can lead to

a situation where the convergence is lost. A common approach is to initially employ the full step
size �(t) =1, and only after checking that the problem is diverging, calculate and use �(t)

optimal.
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In order to check for convergence of the iterative approach, two convergence criteria are used.
The first option is to calculate the error e(t) as the norm of the residual

e(t)
1 =‖W (X(t))‖=‖AX(t)−B(X(t))−C‖ (50)

Convergence of the iterative scheme was assumed when e(t)
1 �p×10−8 where p is the total

number of collocation points both on the surface and inside the drop. The second option is related
to the change in the velocity field at each collocation point at every iteration

e(t)
2 = max

m=1,p

[
|u(t)

i (ym)−u(t−1)
i (ym)|

|u(t−1)
i (ym)|

, ∀u(t−1)
i (ym) �=0

]
(51)

and i=1,2.
The main drawback of this approach is that it can find convergence on a local minimum, even

if the objective function W (X) is still far from 0. This is even more evident when the calculated
value of �(t)

optimal for a given iteration is very small. In view of this behaviour, the convergence

criteria of e(t)
2 is only used if e(t)

2 �10−4 and e(t)
1 �p×10−6.

5. NUMERICAL IMPLEMENTATION

In the numerical solution of the obtained boundary-only system of integral equations, the
surface of the drops as well as the unknown surface densities are approximated using quadratic
isoparametric boundary elements. The resulting set of integrals are regular and can be eval-
uated using standard Gaussian quadratures. There is a small numerical difficulty in calcu-
lating the integral kernels when integration is made over the same element where the source
point is located. In such cases it is recommended to use an integral transformation such as
Telles’ Transformation to evaluate the single layer weak singular integral and Rigid Body
analogy in the case of the double layer kernel. Details on these procedures can be found
in [17, 32].

Since the traction discontinuity across the drop surface is a function of the local values of
the normal vector and curvature, it is necessary to have a good estimation of these two surface
quantities in order to simulate accurately the corresponding drops deformation. In the evaluation
of these two surface quantities, the first issue to consider is the type of interpolation used in
the local representation of the drop boundary. There are different alternatives to interpolate the
drop surface, including high-order schemes such as the Bezier curves, Legender polynomials and
radial basis functions. In this study, the normal vector and curvature are obtained from a local
interpolation of the surface points in terms of a Lagrange polynomial. The choice of this type of
interpolation is due to their ability to approximate complicated nodal distributions in a simple way
and in particular the simplicity in the evaluation of their first and second directional derivatives
required to obtaining the values of the surface normal vector and curvature [3].

Having selected Lagrange polynomials as the interpolation functions, the second issue to consider
is their degree. Low-order polynomials have the advantage of simplicity in their formulation
and stability of the obtained drop evolution due to the smoothness of the surface interpolation.
Unfortunately, the use of this type of polynomials can show great variations on the calculated
value of the normal vector and curvature over small distances, due to their dependence on only few
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neighboring nodes. On the other hand, the use of higher-order polynomials, which requires a larger
number of nodes in the local interpolation, usually results in a gradual variation on the estimated
values of the normal vector and curvature. However, their use can induce large oscillations between
the interpolation points when the nodal positions are not evenly distributed. This type of oscillations
often affects the stability of the obtained drop evolution. Taking all of this into consideration, this
work uses a fourth-order polynomial to locally approximate the drop surface for the calculation of
the normal vector and curvature. The point where these values are calculated is the central point
of the polynomial (node 3) and two more nodes are considered at each side. The normal vector is
obtained by the expression

n= 1√
(x ′

1)
2+(x ′

2)
2

(
x ′
2

−x ′
1

)
(52)

and the curvature calculated by

�nk
�xk

= x ′
1x

′′
2 −x ′

2x
′′
1

((x ′
1)

2+(x ′
2)

2)3/2
(53)

where

x ′
i = 1

6 (x
(1)
i

−8x (2)
i

+8x (4)
i

−x (5)
i ) (54)

x ′′
i = 1

3 (−x (1)
i

+16x (2)
i

−30x (3)
i

+16x (4)
i

−x (5)
i

) (55)

To reduce the effect of undesired interpolation oscillations a remeshing algorithm is implemented
that redistribute uniformly the surface points (for more details, see Section 5.1). The approximations
employed to calculate the normal vector and curvature are valid for any type of two-dimensional
drop surfaces. However, in cases where there is a strong deformation on the drop surface or
close to a drop break up it is necessary to include a remeshing algorithm that could increase the
nodal density near such surface irregularities or instead it is also possible to change the type of
interpolation in those regions. This type of adjusted interpolation in regions of strong deformations
in the case of three-dimensional Newtonian drops was implemented by Cristini et al. [33].

Trajectories and deformation of the drops are computed by advancing the surface nodes according
to the kinematical condition, Equation (9), integrated using a second-order Runge–Kutta scheme
[5] with time steps �t=0.01Ca−1. Results were unaffected by smaller time steps but were unstable
for larger steps when large deformations were taken into consideration.

5.1. Mass conservative surface smoothing

The mathematical characteristics of numerical differentiation on the evaluation of the normal vector
and the curvature make those expressions rather sensitive to oscillations in the nodal positions at
the drop surface. This problem becomes even greater in time-advancing schemes because initially
small oscillations tend to grow creating rough surfaces where polynomials are no longer capable
of approximating the surface correctly. Taking this into account, a numerical scheme must be
implemented to smooth the surface after a given number of time steps.

In this work, a mass conservative scheme was developed to avoid the mass loss while maintaining
good smoothing behaviour and low computational cost. The first step is to consider a section SC
of the surface composed by two adjacent quadratic elements, i.e. consisting of five surface nodes,
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in which the common node between the elements is the one to be smoothed and the remaining two
nodes are those located on either side. The area of the strip between this section of the boundary
curve and the horizontal axes (x1 axes) is given by

ASC =
∫
SC

x2 dx1=
∫
SC,left

x2 dx1+
∫
SC,right

x2 dx1 (56)

Each of the integrals in expression (56) is evaluated by standard Gaussian quadratures using
quadratic interpolation functions. Then a new fourth degree element is chosen to represent the
same surface section. The new interpolation functions require five nodes that in this case are the
same five nodes that originally composed the two quadratic elements in (56). Applying Gaussian
quadratures to evaluate ASC at the new fourth-order element, the following expression is obtained:

ASC =
∫
SC

x2 dx1=
∫ 1

−1

(
5∑

i=1
x (i)
2 �i

)(
5∑
j=1

x ( j)
1

d� j

dε

)
dε (57)

where �i , i=1,2, . . . ,5 are the interpolation functions in the fourth-order element.
The values of x (i)

2 do not depend on ε and can be taken out of the integrals, yielding

ASC =
5∑

i=1
x (i)
2

∫ 1

−1
�i

(
5∑
j=1

x ( j)
1

d� j

dε

)
dε (58)

Since ASC has already been calculated using (56), the value of the mass conservative, smoothed

coordinate x (3)
2 expressed in terms of the coordinates of the surrounding points and x (3)

1 can be
calculated as

x (3)
2 = ASC −∑5

i=1i �=3 x
(i)
2

∫ 1
−1�i (

∑5
j=1 x

( j)
1 (d� j/dε))dε∫ 1

−1�3(
∑5

j=1 x
( j)
1 (d� j/dε))dε

(59)

The developed smoothing algorithm is based on the conservation of the area enclosed by the
drop contour, implying conservation of mass in the present case of two-dimensional incompressible
flows. Previous proposed smoothing algorithms were found to cause significant variations in the
drop area during the simulation period. In the results reported in this study, the area of the drop
changes only slightly as the simulation progresses, keeping within 1% of its initial value throughout
the simulation span. In this manner, it is assured that the analysis and conclusions presented here
are not affected by mass losses. The observed small difference on the drop mass is due to the
numerical integration procedure used in the time advancement of the surface nodes, and other
possible numerical errors.

5.2. Surface remeshing

After a certain number of time steps during the evolution, the drops node distribution on a drop
surface can become too clustered on certain sectors while becoming too dispersed on others; also
high deformation can increase the perimeter causing the initial number of nodes to be insufficient
for the new configuration. Both conditions negatively affect the numerical behaviour of the system
of equations. A good practice is to remesh the surface of the drop every 3–10 time steps depending
on the value of the capillary number.
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In order to obtain a two-dimensional algorithm capable of remeshing the deformed drop geom-
etry, a closed Bézier curve is used, see [34],

C(t)=
N∑
i=0

Pi Bi,N (t) (60)

where

Bi,N (t)=
(
N

i

)
t i (1− t)N−1 (61)

Pi are N+1 poles, and 0<t<1 is a parameter. Given the fact that a Bézier curve yields only an
approximation of a given geometry the node coordinates cannot be used as poles; therefore, an
inversion process must be conducted such that

C(t)|t=ti = x (i)
j (62)

where x (i)
j is the j th coordinate of the node x (i). From (62) a linear system of equations is obtained

yielding the values of poles that assure that the resulting Bézier curve passes through each of the
nodes.

After the values of the poles are obtained, the perimeter of the geometry is integrated using
this representation. By knowing the perimeter of the deformed surface, new nodes are placed at
predetermined equally spaced distances along the boundary using the same integration scheme.

The number of initial boundary nodes is chosen in order to correctly represent the geometry
without an unnecessary increase in the computational cost. In this study, 60 nodes (30 quadratic
boundary elements) were chosen after having tested various discretizations, namely 30, 50 and
100 nodes, finding that 60 nodes had the best balance between approximation of the geometry
and computational expense. For instance, the integration of the initial circular drop perimeter with
60 surface nodes and using 16 Gaussian integration points for each quadratic boundary element,
results in a total error smaller than 0.0002%. It is worth noting, however, that this is only the initial
number of points at the drop surface. In the numerical results, as the drop deforms its perimeter
increases and the number of surface points is incremented up to approximately 120 nodes (60
quadratic boundary elements) trying to maintain a constant element length. In addition to the
surface nodes, 30 collocation points inside each drop, initially uniformly distributed, are used in
the DRM approximation of the extra stress tensor.

The proposed remeshing algorithm is valid for any type of drop deformation and flow config-
uration, outside the breakup condition, due to the used pole inversion algorithm, which assures
that the resulting spline will necessarily pass through all the boundary nodes. A point of caution
must be taken when the deformation of the drop is too extreme, which could require a denser
node distribution in the vicinity of the irregularities to assure a good fit between the spline and
the actual drop boundary.

6. RESULTS AND DISCUSSION

In this section, we will consider the motion caused by the interaction between the two initially
circular drops, which are originally located one above the other and with the line joining their
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Figure 2. Initial set up of drops.

centres perpendicular to the streamlines of a linear shear flow. Particular attention to the trajectories
of their mass centres as the interaction process evolves (mobility) is given. The initial set-up of
the drops is presented in Figure 2, along with drop location relative to the shear flow. The figure
shows that the lower drop is located along a streamline with zero velocity. This means that in the
absence of other drops, the mass centre of the drop should remain static and the only effect of the
base shear flow is to deform the initial shape. As it will be shown later, the presence of a second
drop alters the zero velocity condition of the lower drop mass centre, moving the mass centres of
both drops from their original transversal position, where the transversal direction is considered
to be perpendicular to the direction of motion of the imposed linear shear flow. This transversal
displacement is hereafter referred to as mobility. Simulations reported here have the following
values of the non-dimensional parameters: �̇0=1.0, 0.5��NN�5, 1�Ca�5 and n=1.0,0.8 and 0.6,
covering the range of some common polymer blends, see [11].

For illustrative purposes, let us first consider a particular case of an initial set-up corresponding

to a transversal separation between the two drops of gap=0.5 in the case when �NN =5 and
Ca=3. Figure 3 shows the relative positions and deformation of the drops at different instants in
time; the solid horizontal lines represent the original transversal position of the drop centres. As
time progresses it becomes clear that the transversal distance between the two mass centres has
decreased, and the position of each drop changes significantly from the initial conditions.

Here it is important to note that under the given linear shear flow condition and initial drops
configuration, the behaviour of the drops transversal displacement is symmetric. This implies that
the lower drop moves in the opposite transversal direction of the upper drop transversal motion
but with the same magnitude. Therefore, for simplicity in the presentation, the remainder of this
paper will focus on the motion of only the lower drop. As for the initial gap size between the
two drops, large separations tend to lessen drop interactions, making the analysis in such cases
difficult, given the small value of the cross flow motion of drop centres. On the other hand, very
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Figure 3. Time sequence in the interaction of two drops at gap=0.5, �NN=5, Ca=3
and n=1.0 for t=0.0, 0.33̄, 0.6̄6, 1.0.

small gap sizes tend to show numerical difficulties associated with very small surface separations
[4]. A gap=0.5 showed good magnitudes in the cross flow motion for the cases under study,
while at the same time maintaining sufficient separation between drop surfaces to avoid numerical
coalescence during the simulation time.

6.1. Effect of the viscosity ratio and the effective viscosity ratio

The power law index n has a strong influence on the behaviour of the system by altering the local
value of the effective viscosity ratio inside the drop, i.e.

�eff(x)= �(�̇(x))

�e

Shear thinning reduces the drop viscosity in regions of high deformation and consequently the
value of �eff, which in turn reduces the strength of the interaction between the two drops (see
Figure 4(A)). For the simulation period reported in the figure, the centre of the Newtonian drop,
n=1.0, reaches a maximum transversal displacement of 0.29, at this time the shear thinning drop
with n=0.8 only achieves 95% of the Newtonian displacement and the drop with n=0.6 nearly
completes 85%.

By displacing the lower drop from the zero velocity streamline, the longitudinal position (in
the direction of the imposed shear flow) of the drop centre is also altered (Figure 4(B)). Positive
displacements as those in Figure 4(A) cause the drop to move into the region of positive velocity
streamlines, thus displacing it in the longitudinal positive direction. The effect of shear thinning in
the longitudinal displacement is similar to its effect on the transversal displacements, increasing
the separation of the drops as n decreases (Figure 4(B)).

It is interesting to see how the drop centre horizontal displacement in Figure 4(B) has an
approximately linear growth after t=0.3, corresponding to almost zero horizontal acceleration.
By evaluating the slopes of these graphs it is possible to determine the corresponding drop centre
horizontal velocity, as shown in the three top curves of Figure 5. It is important to observe that this
case corresponds to a value of �NN=5, i.e. a low value of the external fluid viscosity, corresponds
to a case of low resistance by the external fluid to the drop longitudinal translation. Therefore, the
significantly larger horizontal velocity achieved during the beginning of the interaction process,
t�0.3 is only slightly affected by the external fluid (see Figure 5). Figure 5 (three bottom curves),
also displays the magnitude of the base flow velocity at the corresponding position of the drop centre
during its transversal displacement in the time period 0�t�0.6, which magnitude is continuously
increasing. As can be observed from Figure 4(A), after t=0.6 the drop is still moving in the positive
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(A) (B)

Figure 4. Displacement of shear thinning drop mass centres for �NN=5, Ca=5:
(A) transversal and (B) longitudinal.

Figure 5. Longitudinal velocity of lower drop mass centre for �NN=5 and Ca=5 (three top
curves), as well as the magnitude of the base flow velocity at the corresponding transversal

position of the drop centre (bottom three curves).

transversal direction without a significant change on its longitudinal velocity (see Figure 5). As
the drop is displaced transversally, its centre attains regions of higher base flow velocity. In this
way the two set of curves in Figure 5 will tend to merge asymptotically, i.e. when the effect that
one drop exerts on the other ceases, and the drop achieves its steady-state constant translational
velocity.

It is also observed that stronger drop deformations than those of a Newtonian drop, n=1, are
achieved by drops with n<1, see Figure 6. The drop deformation continues through the simulation
period, where non-Newtonian drops become more slender as n decreases. This last effect, could
induce breakup of non-Newtonian drops faster than in Newtonian drops by inducing capillary
instabilities in the drop surface, after achieving sufficient drop deformation, thus favouring fluid
mixing.

Similar drop behaviours to those given above are observed for a value of �NN=3 instead of 5.
In Figure 7(A) and (B), a comparison between the obtained results for this value of �NN and two
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Figure 6. Shapes and positions of shear thinning drop for �NN=5, Ca=5.

(A) (B)

Figure 7. Displacement of shear thinning drop mass centres for �NN=3:
(A) transversal and (B) longitudinal.

different values of Ca=5 and 3 are presented. As can be observed, lower values of the transversal
displacements are achieved by drops with higher values of Ca, i.e. smaller values of the surface
tension. On the other hand, stronger effect of the power law index n on the transversal displacement
is observed for higher values of Ca. In the case of Ca=3, the maximum observed transversal
displacement of the drop with n=0.6 is approximately 86% of that of the corresponding Newtonian
drop, whereas for Ca=5 and n=0.6 the non-Newtonian drop achieves only 60% of the Newtonian
drop displacement.

The longitudinal displacements in Figure 7(B) reflect the transversal displacement attained by
the different drops, showing significant differences between shear thinning and Newtonian drops.
By looking at the displacement of the mass centers in both directions (Figure 7) it can be observed
that the trajectory of the drop with Ca=5 and n=0.8 is practically equal to the one with Ca=3
and n=0.6. The reason for this is that the reduction in �eff caused by the power law index in the
second case is compensated by the lower value of the surface tension, i.e. higher values of Ca,
in the first case inducing higher deformations. For higher value of Ca, the drop achieves higher
deformation and therefore the effect of shear thinning for the same value of n is greater.

In Figure 7, the previously defined dimensionless time has been scaled with the capillary
number (time×Ca), since in our dimensionless formulation of the problem the asymptotic velocity
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(A) (B)

Figure 8. Displacement of shear thinning drop mass centres for �NN=1:
(A) transversal and (B) longitudinal.

boundary condition (19) is linearly proportional to Ca. Therefore, comparison of displacement and
velocities at different times using the original dimensionless time for different values of Ca results
on shifted graphics; however, with the use of the modified time scale, time×Ca, the corresponding
graphics have the same origin of reference.

In the analysis presented for values of �NN=3 and 5, the behaviour of the drop evolution are
similar; however, this is not the case when the value of �NN�1. In Figure 8(A) and (B), we compare
the resulting displacements, transversal and longitudinal, for two different values of Ca=2 and 3,
when �NN=1. When Ca=2 and n=0.8 no motion is observed in the first few moments of the
simulation and it is only after a significant reduction in the value of �eff that a reverse mobility is
experienced by the drops, slightly pushing them apart.

This type of negative displacement was previously observed by Giraldo et al. [35] in cases of two
Newtonian drops experiencing strong initial deformations. The negative displacement was caused
by the fluid inside the lower drop moving away from a possible point of contact with the other
drop as can be seen in Figure 9. This phenomenon increases with the increase in the initial drop
deformations, as appears to be the case when n=0.6 and Ca=3. The reduction in the separation
between the drops appears to create an increase in the drop surface tractions. This surface effect
due to the reduction in separation, could be explainable through the lubrication theory and it is
known to be of considerable influence in two-dimensional flows, see [4]. Given that, at some time
during the simulation, the surfaces of the two drops could be in very close proximity, coalescence
can be a possibility; however, this cannot be the case in this study since the required Van der
Waals forces are not included, see [5].

A consequence of the negative transversal displacement is the change in the direction of the
drop longitudinal motion, as shown in Figure 8(B). By displacing the lower drop in the negative
transversal direction, its mass centre moves into the region where the imposed base flow has
negative velocity, inducing the motion of the drop in the negative longitudinal direction. Owing to
the symmetry of motion of the two drops (upper and lower), the upper drop reaches a streamline
with a higher longitudinal velocity than the one it was originally in. Taking into account that
the lower drop is moving in the opposite direction, and that the upper drop is moving faster it
follows that, centre-to-centre distance increases at a higher rate than in the other cases considered,
influencing drop dispersion.
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Figure 9. Shapes and positions of shear thinning drop for �NN=1.

The magnitudes of the obtained drop displacements for given values of Ca and viscosity ratio
also requires some attention. Figures 7 and 8 show how the increase in Ca, i.e. reduction in surface
tension, has the effect of reducing the transversal displacement of the drops due to the corresponding
increase in the drop deformation. It is well known that the squeezing flow produces when two
viscous drops approach each other is different to the one produced by the motion of two equivalent
rigid particles. Because of the mobility of the fluid–fluid interface in the case of the drops, there is
a slip velocity superposed on top of the flow motion between the drops, and the pressure build up
is much less than that of the rigid particles (for more details, see [36]). Therefore, the behaviour of
the interaction between the two drops depends on the amount of deformation experienced by them,
with lower pressure build up between the drops as their deformation is higher. The above trend
relating the magnitude of the translate displacement and the value of Ca, seems to be reversed
in the cases when n=0.6, Ca=2 and 3, reported in Figure 8, where the case of Ca=3 shows a
greater magnitude in the transversal displacement. However, it is important to observe that in this
latter case the displacement occurs in the negative direction, i.e. in the region of reverse flow, in
contrast with all the other cases considered before with positive displacement. It is also important
to note that in this case the drop experiences a significant initial deformation due to its low value
of n and large value of Ca. Due to the interaction of the drops, the fluid motion inside the drops
tends to move the drop mass centre. In Figure 8, as the fluid moves towards the far end of the drop,
the mass centre of the drop is displaced in the negative direction, explaining the larger negative
displacements.

The motion of the lower drop in the negative transversal direction can also be observed in
Figure 10 where the presence of negative transversal and longitudinal displacements of the lower
drop centre, becomes more evident in the case when �NN=0.5, even for Newtonian drops, i.e.
n=1, see Figure 10(A) and (B). As can be seen from these figures, once the upper drop moves
a sufficient distance in the longitudinal direction, such that the distance between the two drop
surfaces is large enough to reduce their initial mutual repulsion, the mobility phenomena start to
take effect on the interaction process between the drops, moving the lower drop in the positive
directions.
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(A) (B)

Figure 10. Displacement of shear thinning drop mass centres for �NN=0.5 and Ca=1:
(A) transversal and (B) longitudinal.
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Figure 11. Internal velocity field for �NN=0.5 and Ca=1 (lower drop).

Figure 11 shows a plot of the internal velocity field at the lower drop in the case of �=0.5,
and Ca=3. It is important to point out that this velocity field corresponds to a drop that is
simultaneously moving in both directions and at the same time deforming according to the imposed
external flow field. In the figure, it is possible to observe the superposition effect of the translational
motion and the drop internal recirculation. In the case of the upper drop, the internal recirculation
appears to be hid by the large magnitude of the translational velocity.

So far the analyses have been made considering �NN constant and changing the values of Ca
or n. Now, the focus will be set on a constant value of Ca and different values of �NN to understand
how the intensity of the transversal motion and shear thinning is affected. Figure 12(A) shows
the transversal displacements of the mass centres of a Newtonian (n=1) and a non-Newtonian
drop (n=0.6) when Ca=5 (corresponding to small surface tension) and values of �NN ranging
from 1 to 5. Newtonian displacements show that the magnitude of the transversal displacement
is directly related to �NN, being greater for the larger values of this parameter. Results for �NN=1
and n=1 show a very small displacement from the initial position. In this case, the breaking point
between mobility and separation is found somewhere below the value of �NN=1. For the given
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(A) (B)

Figure 12. Displacement of shear thinning drop mass centres for Ca=5:
(A) transversal and (B) longitudinal.

value of Ca, Newtonian drops always have bigger displacements than non-Newtonian drops with
the important feature that for �NN=1 non-Newtonian drops experience negative displacements,
which is not observed in the case of Newtonian drops. Longitudinal displacements (Figure 12(B))
show an even larger difference between the two extreme values of �NN than those of the transversal
displacements.

In Figure 12(A), for �NN=1 and n=0.6, drop centre separation, i.e. negative transversal displace-
ments, is obtained through out the simulation period achieving a constant negative value of the
transversal displacement. In this manner, during the evolution process, the lower drop has been
transversally positioned in a place that avoids any drop interaction that might cause mobility.
For the value of �NN=2, the behaviour of the non-Newtonian drop is very similar to that of the
Newtonian drop with �NN=1 and n=1, following almost the same transversal and longitudinal
path showing that during the simulation period the value of �eff is approximately constant.

Finally, it is important to note that the difference between Newtonian and non-Newtonian drops
is reduced as �NN increases. For instance, the maximum transversal displacement achieved during
the simulation of the non-Newtonian drop with �NN=2 is approximately 29% of the corresponding
displacement for a Newtonian drop, for �NN=3 it is approximately 57% and for �NN=5 almost
86%. The main cause for this reduction is that drop deformation is inhibited by higher values of
�NN, reducing the value of �̇ in the interior of the drop. The effect of the reduction in the value
of �̇ is more evident in Figure 13 for a value of Ca=2 (large surface tension), where for �NN=3
almost no difference is observed between the Newtonian and the non-Newtonian drops. The case of
�NN=5 requires special attention, as the Newtonian and non-Newtonian drops have no difference
whatsoever because the value of �̇ is below the value of �̇0 at every point inside the drop, behaving
as a Newtonian drop in accordance with the truncated power law model (see Section 2).

7. CONCLUSIONS

A direct boundary-only formulation for the simulation of the motion and deformation of non-
Newtonian drops in Newtonian Stokes carrying flow was developed. The variation of the viscosity
in the non-Newtonian fluid was modelled using the truncated power law and using an implicit
velocity gradient calculation to obtain the corresponding shear stress. This approach constitutes
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(A) (B)

Figure 13. Displacement of shear thinning drop mass centres for Ca=2:
(A) transversal and (B) longitudinal.

an efficient and physically accurate method for the simulation of drops interaction and deforma-
tion. Convergent solutions of the non-homogeneous and non-linear system of algebraic equations
obtained after discretization of the corresponding system of integral equations was obtained using
an iterative Newton–Raphson method with backtracking.

Under the conditions considered in this work, non-Newtonian effects were found to strongly
influence the value of �eff in the domain interior to the drops, altering their behaviour in comparison
with the corresponding Newtonian drop, with equal values of �NN. The difference between the
behaviour of a non-Newtonian drop and an equivalent Newtonian drop is more significant as the
value of the power index n is smaller than 1. The combination of Ca and �NN plays an important
role in the intensity of the non-Newtonian behaviour, where high values of �NN show only limited
divergence from the Newtonian behaviour, for most of the tested values of Ca. For values of
�NN=5 and Ca<2 (large surface tension), the drops behave as Newtonian drops independent of
the value of n, because the condition for shear-dependent viscosity (�̇>�̇0) was not fulfilled. If
the standard power law model is used instead of the proposed truncated model, shear thinning
drops with values of �NN=5,n<1.0 and Ca<2 will exhibit shear thickening effects, which are
not physically feasible.

Drops at constant viscosity ratio and different capillary numbers, presented two distinct
behaviours. The first of them is what can be considered as a classical mobility, where the drops
are pulled together in the transversal direction; in the second behaviour, a short range repulsion is
observed, which appears to be caused by lubrication forces that increases the transversal distance
and consequently increases the velocity at which drop centres separate. This separation was
observed for Newtonian drops only for values of �NN<1, but can be induced by shear thinning
for cases outside this condition if the deformation of the drop is high enough to reduce the value
of �eff sufficiently.

APPENDIX A: EXPLICIT CALCULATION OF THE PSEUDO BODY FORCE TERMS

The selected iterative solution scheme requires the value of the pseudo-body forces in each of the
collocation points obtained from the velocity fields found at the previous iteration (see Section 4).
In this section the procedure to calculate this term is explained.
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The second invariant of the deformation tensor (4) can be expressed as

�̇=
√
2(	211+2	212+	222) (A1)

where

	11= �u1
�x1

, 	12=	21= 1

2

(
�u1
�x2

+ �u2
�x1

)
, 	22= �u2

�x2
(A2)

From the continuity equation (1a) �u1/�x1=−�u2/�x2, therefore
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√√√√2

(
2
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+ 1
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�x2

+ �u2
�x1

)2
)

(A3)

Using the definition of the extra stress tensor (16), expression (A3) and representing the velocity
derivatives by (44), the following expression is obtained:

(�ei j )
(t) =[�NN�n−1−�N]×

(
�F
�x j

F−1u(t)
i + �F

�xi
F−1u(t)

j

)
(A4)
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�x2
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2

)2

�̇0
(A5)

Following a similar procedure for the derivatives of �ei j than the one in (44) for the gradient of ui ,
the divergence of the extra stress tensor can be expressed as

��e(t)i j

�x j
= �F

�x j
F−1[�NN�n−1−�N]×

(
�F
�x j

F−1u(t)
i + �F

�xi
F−1u(t)

j

)
(A6)

Relations (A4) and (A6) define the extra stress tensor and its divergence in terms of the nodal
values of the velocity field inside a drop.
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